Unexpected Behavior of Hybrid Matter–Antimatter Atoms in Superfluid Helium Surprises Physicists at CERN

 

International Conference on Condensed Matter Physics


A hybrid matter­­–antimatter helium atom containing an antiproton, the proton’s antimatter equivalent, in place of an electron has an unexpected response to laser light when immersed in superfluid helium, reports the ASACUSA collaboration at CERN. The result, described in a paper published on March 16, 2022, in the journal Nature, may open doors to several lines of research.




Our study suggests that hybrid matter–antimatter helium atoms could be used beyond particle physics, in particular in condensed-matter physics and perhaps even in astrophysics experiments,” says ASACUSA co-spokesperson Masaki Hori. “We have arguably made the first step in using antiprotons to study condensed matter.”

The ASACUSA collaboration is well used to making hybrid matter–antimatter helium atoms to determine the antiproton’s mass and compare it with that of the proton. These hybrid atoms contain an antiproton and an electron around the helium nucleus (instead of two electrons around a helium nucleus) and are made by mixing antiprotons produced at CERN’s antimatter factory with a helium gas that has a low atomic density and is kept at low temperature.


Low gas densities and temperatures have played a key role in these antimatter studies, which involve measuring the response of the hybrid atoms to laser light in order to determine their light spectrum. High gas densities and temperatures result in spectral lines, caused by transitions of the antiproton or electron between energy levels, that are too broad, or even obscured, to allow the mass of the antiproton relative to that of the electron to be determined.


Visit:https://condensed-matter.sfconferences.com/

#physics #particlephysics #antimatter #matter #atoms #CERN #superfluidhelium #unexpectedbehavior #surprise



Comments

Popular posts from this blog

From black holes to sands: Application of holographic duality to granular matter

Time Crystals: A New Form of Matter That Could Change Everything

Viable superconducting material created at low temperature and low pressure