Unraveling One of the Greatest Mysteries in Condensed Matter Physics

 

International Conference on Condensed Matter Physics

 

Illinois and SLAC researchers use a new technique.



One of the greatest mysteries in condensed matter physics is the exact relationship between charge order and superconductivity in cuprate superconductors. In superconductors, electrons move freely through the material—there is zero resistance when it’s cooled below its critical temperature. However, the cuprates simultaneously exhibit superconductivity and charge order in patterns of alternating stripes. This is paradoxical in that charge order describes areas of confined electrons. How can superconductivity and charge order coexist?

Now researchers at the University of Illinois at Urbana-Champaign, collaborating with scientists at the SLAC National Accelerator Laboratory, have shed new light on how these disparate states can exist adjacent to one another. Illinois Physics post-doctoral researcher Matteo Mitrano, Professor Peter Abbamonte, and their team applied a new x-ray scattering technique, time-resolved resonant soft x-ray scattering, taking advantage of the state-of-the-art equipment at SLAC. This method enabled the scientists to probe the striped charge order phase with an unprecedented energy resolution. This is the first time this has been done at an energy scale relevant to superconductivity.


The scientists measured the fluctuations of charge order in a prototypical copper-oxide superconductor, La2−xBaxCuO4 (LBCO) and found the fluctuations had an energy that matched the material’s superconducting critical temperature, implying that superconductivity in this material—and by extrapolation, in the cuprates—may be mediated by charge-order fluctuations.

The researchers further demonstrated that, if the charge order melts, the electrons in the system will reform the striped areas of charge order within tens of picoseconds. As it turns out, this process obeys a universal scaling law. To understand what they were seeing in their experiment, Mitrano and Abbamonte turned to Illinois Physics Professor Nigel Goldenfeld and his graduate student Minhui Zhu, who were able to apply theoretical methods borrowed from soft condensed matter physics to describe the formation of the striped patterns.

#CondensedMatterPhysics #MysterySolved #QuantumMechanics #Superconductivity #MaterialsScience #HighTemperatureSuperconductivity



Comments

Popular posts from this blog

From black holes to sands: Application of holographic duality to granular matter

Time Crystals: A New Form of Matter That Could Change Everything

Viable superconducting material created at low temperature and low pressure